## VIP Refresher: Linear Algebra and Calculus

## Afshine Amidi and Shervine Amidi

October 6, 2018

## General notations

$\square$ Vector - We note $x \in \mathbb{R}^{n}$ a vector with $n$ entries, where $x_{i} \in \mathbb{R}$ is the $i^{t h}$ entry:

$$
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n}
$$

$\square$ Matrix - We note $A \in \mathbb{R}^{m \times n}$ a matrix with $m$ rows and $n$ columns, where $A_{i, j} \in \mathbb{R}$ is the entry located in the $i^{\text {th }}$ row and $j^{\text {th }}$ column:

$$
A=\left(\begin{array}{ccc}
A_{1,1} & \cdots & A_{1, n} \\
\vdots & & \vdots \\
A_{m, 1} & \cdots & A_{m, n}
\end{array}\right) \in \mathbb{R}^{m \times n}
$$

Remark: the vector $x$ defined above can be viewed as a $n \times 1$ matrix and is more particularly called a column-vector
$\square$ Identity matrix - The identity matrix $I \in \mathbb{R}^{n \times n}$ is a square matrix with ones in its diagonal and zero everywhere else:

$$
I=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right)
$$

Remark: for all matrices $A \in \mathbb{R}^{n \times n}$, we have $A \times I=I \times A=A$.
$\square$ Diagonal matrix - A diagonal matrix $D \in \mathbb{R}^{n \times n}$ is a square matrix with nonzero values in its diagonal and zero everywhere else

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & d_{n}
\end{array}\right)
$$

Remark: we also note $D$ as $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$.

## Matrix operations

$\square$ Vector-vector multiplication - There are two types of vector-vector products

- inner product: for $x, y \in \mathbb{R}^{n}$, we have:

$$
x^{T} y=\sum_{i=1}^{n} x_{i} y_{i} \in \mathbb{R}
$$

- outer product: for $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$, we have:

$$
x y^{T}=\left(\begin{array}{ccc}
x_{1} y_{1} & \cdots & x_{1} y_{n} \\
\vdots & & \vdots \\
x_{m} y_{1} & \cdots & x_{m} y_{n}
\end{array}\right) \in \mathbb{R}^{m \times n}
$$

$\square$ Matrix-vector multiplication - The product of matrix $A \in \mathbb{R}^{m \times n}$ and vector $x \in \mathbb{R}^{n}$ is a vector of size $\mathbb{R}^{m}$, such that:

$$
A x=\left(\begin{array}{c}
a_{r, 1}^{T} x \\
\vdots \\
a_{r, m}^{T} x
\end{array}\right)=\sum_{i=1}^{n} a_{c, i} x_{i} \in \mathbb{R}^{m}
$$

where $a_{r, i}^{T}$ are the vector rows and $a_{c, j}$ are the vector columns of $A$, and $x_{i}$ are the entries of $x$.
$\square$ Matrix-matrix multiplication - The product of matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is a matrix of size $\mathbb{R}^{n \times p}$, such that:

$$
A B=\left(\begin{array}{ccc}
a_{r, 1}^{T} b_{c, 1} & \cdots & a_{r, 1}^{T} b_{c, p} \\
\vdots & & \vdots \\
a_{r, m}^{T} b_{c, 1} & \cdots & a_{r, m}^{T} b_{c, p}
\end{array}\right)=\sum_{i=1}^{n} a_{c, i} b_{r, i}^{T} \in \mathbb{R}^{n \times p}
$$

where $a_{r, i}^{T}, b_{r, i}^{T}$ are the vector rows and $a_{c, j}, b_{c, j}$ are the vector columns of $A$ and $B$ respectively.
$\square$ Transpose - The transpose of a matrix $A \in \mathbb{R}^{m \times n}$, noted $A^{T}$, is such that its entries are flipped:

$$
\forall i, j, \quad A_{i, j}^{T}=A_{j, i}
$$

Remark: for matrices $A, B$, we have $(A B)^{T}=B^{T} A^{T}$
$\square$ Inverse - The inverse of an invertible square matrix $A$ is noted $A^{-1}$ and is the only matrix such that:

$$
A A^{-1}=A^{-1} A=I
$$

Remark: not all square matrices are invertible. Also, for matrices $A, B$, we have $(A B)^{-1}=$ $B^{-1} A^{-1}$
$\square$ Trace - The trace of a square matrix $A$, noted $\operatorname{tr}(A)$, is the sum of its diagonal entries:

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i, i}
$$

Remark: for matrices $A, B$, we have $\operatorname{tr}\left(A^{T}\right)=\operatorname{tr}(A)$ and $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
$\square$ Determinant - The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$, noted $|A|$ or $\operatorname{det}(A)$ is expressed recursively in terms of $A_{\backslash i, \backslash j}$, which is the matrix A without its $i^{\text {th }}$ row and $j^{\text {th }}$ column, as follows:

$$
\operatorname{det}(A)=|A|=\sum_{j=1}^{n}(-1)^{i+j} A_{i, j}\left|A_{\backslash i, \backslash j}\right|
$$

Remark: $A$ is invertible if and only if $|A| \neq 0$. Also, $|A B|=|A||B|$ and $\left|A^{T}\right|=|A|$.

## Matrix properties

$\square$ Symmetric decomposition - A given matrix $A$ can be expressed in terms of its symmetric and antisymmetric parts as follows:

$$
A=\underbrace{\frac{A+A^{T}}{2}}_{\text {Symmetric }}+\underbrace{\frac{A-A^{T}}{2}}_{\text {Antisymmetric }}
$$

$\square$ Norm - A norm is a function $N: V \longrightarrow[0,+\infty[$ where $V$ is a vector space, and such that for all $x, y \in V$, we have:

- $N(x+y) \leqslant N(x)+N(y)$
- $N(a x)=|a| N(x)$ for $a$ scalar
- if $N(x)=0$, then $x=0$

For $x \in V$, the most commonly used norms are summed up in the table below:

| Norm | Notation | Definition | Use case |
| :---: | :---: | :---: | :---: |
| Manhattan, $L^{1}$ | $\\|x\\|_{1}$ | $\sum_{i=1}^{n}\left\|x_{i}\right\|$ | LASSO regularization |
| Euclidean, $L^{2}$ | $\\|x\\|_{2}$ | $\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$ | Ridge regularization |
| $p$-norm, $L^{p}$ | $\\|x\\|_{p}$ | $\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p}}$ | Hölder inequality |
| Infinity, $L^{\infty}$ | $\\|x\\|_{\infty}$ | $\max _{i}\left\|x_{i}\right\|$ | Uniform convergence |

$\square$ Linearly dependence - A set of vectors is said to be linearly dependent if one of the vectors in the set can be defined as a linear combination of the others.
Remark: if no vector can be written this way, then the vectors are said to be linearly independent.
$\square$ Matrix rank - The rank of a given matrix $A$ is noted $\operatorname{rank}(A)$ and is the dimension of the vector space generated by its columns. This is equivalent to the maximum number of linearly independent columns of $A$.
$\square$ Positive semi-definite matrix - A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD) and is noted $A \succ 0$ if we have

$$
A=A^{T} \quad \text { and } \quad \forall x \in \mathbb{R}^{n}, \quad x^{T} A x \geqslant 0
$$

Remark: similarly, a matrix $A$ is said to be positive definite, and is noted $A \succ 0$, if it is a PSD matrix which satisfies for all non-zero vector $x, x^{T} A x>0$.
$\square$ Eigenvalue, eigenvector - Given a matrix $A \in \mathbb{R}^{n \times n}, \lambda$ is said to be an eigenvalue of $A$ if there exists a vector $z \in \mathbb{R}^{n} \backslash\{0\}$, called eigenvector, such that we have:

$$
A z=\lambda z
$$

$\square$ Spectral theorem - Let $A \in \mathbb{R}^{n \times n}$. If $A$ is symmetric, then $A$ is diagonalizable by a real orthogonal matrix $U \in \mathbb{R}^{n \times n}$. By noting $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, we have:

$$
\exists \Lambda \text { diagonal, } \quad A=U \Lambda U^{T}
$$

$\square$ Singular-value decomposition - For a given matrix $A$ of dimensions $m \times n$, the singularvalue decomposition (SVD) is a factorization technique that guarantees the existence of $U m \times m$ unitary, $\Sigma m \times n$ diagonal and $V n \times n$ unitary matrices, such that:

$$
A=U \Sigma V^{T}
$$

## Matrix calculus

$\square$ Gradient - Let $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ be a function and $A \in \mathbb{R}^{m \times n}$ be a matrix. The gradient of $f$ with respect to $A$ is a $m \times n$ matrix, noted $\nabla_{A} f(A)$, such that:

$$
\left(\nabla_{A} f(A)\right)_{i, j}=\frac{\partial f(A)}{\partial A_{i, j}}
$$

Remark: the gradient of $f$ is only defined when $f$ is a function that returns a scalar
$\square$ Hessian - Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function and $x \in \mathbb{R}^{n}$ be a vector. The hessian of $f$ with respect to $x$ is a $n \times n$ symmetric matrix, noted $\nabla_{x}^{2} f(x)$, such that:

$$
\left(\nabla_{x}^{2} f(x)\right)_{i, j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}
$$

Remark: the hessian of $f$ is only defined when $f$ is a function that returns a scalar.
$\square$ Gradient operations - For matrices $A, B, C$, the following gradient properties are worth having in mind:

$$
\nabla_{A} \operatorname{tr}(A B)=B^{T} \quad \nabla_{A^{T}} f(A)=\left(\nabla_{A} f(A)\right)^{T}
$$

$$
\nabla_{A} \operatorname{tr}\left(A B A^{T} C\right)=C A B+C^{T} A B^{T} \quad \nabla_{A}|A|=|A|\left(A^{-1}\right)^{T}
$$

